Invariants of 3-manifolds from intersecting kernels of Heegaard splittings

Fengling Li

(Joint with Fengchun Lei and Jie Wu)

School of Mathematical Sciences Dalian University of Technology, Dalian, China Email: dutlfl@163.com

RCCKT, July 6, 2017

4 B K 4 B K

- Background
- Ø Brief review on Heegaard splittings
- \bigcirc Intersecting Kernel K of a Heegaard Splitting
- The SCC subgroup $\Lambda(K)$ of K
- Main results
- Some questions

1. Background

Let M be a compact connected orientable 3-manifold, $H_1 \cup_S H_2$ a Heegaard splitting of M. For j = 1, 2, let

$$i_j: S \hookrightarrow H_j$$

be the inclusion map,

$$i_{j_*}: \pi_1(S) \to \pi_1(H_j)$$

the homomorphism induced by the inclusion, and

$$K_j = \operatorname{Ker}(i_{j_*}).$$

Both K_1 and K_2 are normal subgroups of $\pi_1(S)$. We call $K = K_1 \cap K_2$ the intersecting kernel of the Heegaard splitting $H_1 \cup_S H_2$.

- The intersecting kernel *K* was first introduced by J. Stallings in 1960s, as the kernel of the splitting homomorphism, for the reformulation of the Poincaré conjecture in algebraic terms.
- Stallings' approach has been intensively studied by W. H. Jaco, C. D. Papakyriakopoulos, and E. Rapaport in late 1960s and early 1970s.
- It was used by J. Birman and others to discover inequivalent Heegaard splittings in 1980s.
- Some recent work on the subjects of handlebody subgroups in a mapping class group, extending pseudo-Anosov maps into compression bodies, and some others, are also closely related to the intersecting kernels of Heegaard splittings.

< 同 > < 回 > < 回 >

- The intersecting kernel *K* was first introduced by J. Stallings in 1960s, as the kernel of the splitting homomorphism, for the reformulation of the Poincaré conjecture in algebraic terms.
- Stallings' approach has been intensively studied by W. H. Jaco, C. D. Papakyriakopoulos, and E. Rapaport in late 1960s and early 1970s.
- It was used by J. Birman and others to discover inequivalent Heegaard splittings in 1980s.
- Some recent work on the subjects of handlebody subgroups in a mapping class group, extending pseudo-Anosov maps into compression bodies, and some others, are also closely related to the intersecting kernels of Heegaard splittings.

・ 同 ト ・ ヨ ト ・ ヨ ト

- The intersecting kernel *K* was first introduced by J. Stallings in 1960s, as the kernel of the splitting homomorphism, for the reformulation of the Poincaré conjecture in algebraic terms.
- Stallings' approach has been intensively studied by W. H. Jaco, C. D. Papakyriakopoulos, and E. Rapaport in late 1960s and early 1970s.
- It was used by J. Birman and others to discover inequivalent Heegaard splittings in 1980s.
- Some recent work on the subjects of handlebody subgroups in a mapping class group, extending pseudo-Anosov maps into compression bodies, and some others, are also closely related to the intersecting kernels of Heegaard splittings.

伺 ト く ヨ ト く ヨ ト

- The intersecting kernel *K* was first introduced by J. Stallings in 1960s, as the kernel of the splitting homomorphism, for the reformulation of the Poincaré conjecture in algebraic terms.
- Stallings' approach has been intensively studied by W. H. Jaco, C. D. Papakyriakopoulos, and E. Rapaport in late 1960s and early 1970s.
- It was used by J. Birman and others to discover inequivalent Heegaard splittings in 1980s.
- Some recent work on the subjects of handlebody subgroups in a mapping class group, extending pseudo-Anosov maps into compression bodies, and some others, are also closely related to the intersecting kernels of Heegaard splittings.

2. Brief review on Heegaard splittings

A handlebody is a connected 3-manifold obtained by attaching 1-handles to 3-balls. We may regard a 3-ball as a handlebody of genus 0.

A compression body is a connected 3-manifold obtained by attaching 1-handles to (closed surfaces) $\times I$ and 3-balls.

A Heegaard splitting of a compact orientable connected 3-manifold M is a decomposition of M into two compression bodies V and W such that $V \cap W = S = \partial_+ V = \partial_+ W$ and $M = V \cup W$. S is called a Heegaard surface of M.

It is a well-known fact that any compact orientable connected 3-manifold admits a Heegaard splitting. A Heegaard splitting of a compact orientable connected 3-manifold M is a decomposition of M into two compression bodies V and W such that $V \cap W = S = \partial_+ V = \partial_+ W$ and $M = V \cup W$. S is called a Heegaard surface of M.

It is a well-known fact that any compact orientable connected 3-manifold admits a Heegaard splitting.

- Let $V \cup_S W$ be a Heegaard splitting for M.
- $V \cup_S W$ is reducible if there are essential disks $D_1 \subset V$ and $D_2 \subset W$ such that $\partial D_1 = \partial D_2$. Otherwise, $V \cup_S W$ is irreducible.
- $V \cup_S W$ is stabilized if there are essential disks $D_1 \subset V$ and $D_2 \subset W$ such that $|\partial D_1 \cap \partial D_2| = 1$. Otherwise, $V \cup_S W$ is unstabilized.

Clearly, a stabilized Heegaard splitting of genus $g \ge 2$ is reducible.

A stabilized Heegaard splitting $V \cup_S W$ can be viewed as a connected sum of a Heegaard splitting $V' \cup_{S'} W'$ (with genus g(S) - 1) and a genus 1 Heegaard splitting of S^3 . $V \cup_S W$ is called an elementary stabilization of $V' \cup_{S'} W'$.

A Heegaard splitting $V \cup_S W$ is called a stabilization of a Heegaard splitting $V'' \cup_{S''} W''$ if $V \cup_S W$ can be obtained from $V'' \cup_{S''} W''$ by a finite number of elementary stabilizations.

Let $V \cup_S W$ and $V' \cup_{S'} W'$ be two Heegaard splittings for M.

 $V \cup_S W$ and $V' \cup_{S'} W'$ are called equivalent if S and S' are isotopic in M.

 $V \cup_S W$ and $V' \cup_{S'} W'$ are called stably equivalent if, after a finite number of elementary stabilizations, they have a common stabilization up to equivalence.

Theorem (Reidemeister-Singer Theorem)

Any two Heegaard splittings $V \cup_S W$ and $V' \cup_{S'} W'$ for 3-manifold M are stably equivalent.

Definition

Let M be a 3-manifold and $\mathcal{M} = (M; H_1, H_2; S)$ a Heegaard splitting for M. Let $i_j : S \hookrightarrow H_j$ be the inclusion, and $i_{j_*} : \pi_1(S) \to \pi_1(H_j)$ the induced homomorphism, j = 1, 2. Then $\operatorname{Ker}(i_{1*}) \cap \operatorname{Ker}(i_{2*})$ is called the *intersecting kernel* of \mathcal{M} , and is denoted by $K(\mathcal{M})$.

Clearly $K(\mathcal{M})$ is a (normal) subgroup of $\pi_1(S)$, which is a *Fuchsian*-group. It is a well-known fact that every subgroup of $\pi_1(S)$ with finite index (infinite index, resp.) is a *Fuchsian*-group (free group, resp.).

伺 ト イ ヨ ト イ ヨ

Definition

Let M be a 3-manifold and $\mathcal{M} = (M; H_1, H_2; S)$ a Heegaard splitting for M. Let $i_j : S \hookrightarrow H_j$ be the inclusion, and $i_{j_*} : \pi_1(S) \to \pi_1(H_j)$ the induced homomorphism, j = 1, 2. Then $\operatorname{Ker}(i_{1*}) \cap \operatorname{Ker}(i_{2*})$ is called the *intersecting kernel* of \mathcal{M} , and is denoted by $K(\mathcal{M})$.

Clearly $K(\mathcal{M})$ is a (normal) subgroup of $\pi_1(S)$, which is a *Fuchsian*-group. It is a well-known fact that every subgroup of $\pi_1(S)$ with finite index (infinite index, resp.) is a *Fuchsian*-group (free group, resp.).

伺 ト イ ヨ ト イ ヨ ト

Simple examples

Let M = (S³; H₁, H₂; T) be a genus 1 Heegaard splitting for S³. Let a, b be two essential simple closed curves on the torus T such that a bounds a disk in H₁, b bounds a disk in H₂, and a and b intersect in a single point P, which we choose as a base point. Then {[a], [b]} is a basis for π₁(T). Clearly,

$$\operatorname{Ker}(i_{1*}:\pi_1(T)\to\pi_1(H_1))=\{n[a]:n\in\mathbb{Z}\},\$$

$$\operatorname{Ker}(i_{2*}:\pi_1(T)\to\pi_1(H_2))=\{n[b]:n\in\mathbb{Z}\}.$$

Thus $K(\mathcal{M}) = \{0\}$. Similarly,

- for a genus 1 Heegaard splitting \mathcal{M}_1 for a lens space L(p, q), we have $K(\mathcal{M}_1) = \{0\}$;
- So for a genus 1 Heegaard splitting \mathcal{M}_2 for $S^2 × S^1$, we have $K(\mathcal{M}_2) \cong \mathbb{Z}$.

伺 と く ヨ と く ヨ と … ヨ

Proposition

Let $V \cup_S W$ be a non-trivial Heegaard splitting of genus ≥ 2 for M. Let $i: S \hookrightarrow V$ and $j: S \hookrightarrow W$ be the inclusions, and $i_*: \pi_1(S) \to \pi_1(V), j_*: \pi_1(S) \to \pi_1(W)$ the induced homomorphisms. Then for any $\alpha \in \operatorname{Ker} i_*, \beta \in \operatorname{Ker} j_*,$ $[\alpha, \beta] \in K(V \cup_S W)$. In other words, $[\operatorname{Ker} i_*, \operatorname{Ker} j_*] \triangleleft K(V \cup_S W)$.

Remark. For a non-trivial Heegaard splitting \mathcal{M} of genus ≥ 2 , $\mathcal{K}(\mathcal{M})$ is never trivial.

Proposition

A Heegaard splitting $\mathcal{M} = (M; V, W; S)$ is reducible if and only if there exists an essential simple closed curve C in S such that $[C] \in \mathcal{K}(\mathcal{M}).$

- 同 ト - ヨ ト - - ヨ ト

Proposition

Let $V \cup_S W$ be a non-trivial Heegaard splitting of genus ≥ 2 for M. Let $i: S \hookrightarrow V$ and $j: S \hookrightarrow W$ be the inclusions, and $i_*: \pi_1(S) \to \pi_1(V), j_*: \pi_1(S) \to \pi_1(W)$ the induced homomorphisms. Then for any $\alpha \in \operatorname{Ker} i_*, \beta \in \operatorname{Ker} j_*,$ $[\alpha, \beta] \in K(V \cup_S W)$. In other words, $[\operatorname{Ker} i_*, \operatorname{Ker} j_*] \triangleleft K(V \cup_S W)$.

Remark. For a non-trivial Heegaard splitting \mathcal{M} of genus ≥ 2 , $\mathcal{K}(\mathcal{M})$ is never trivial.

Proposition

A Heegaard splitting $\mathcal{M} = (M; V, W; S)$ is reducible if and only if there exists an essential simple closed curve C in S such that $[C] \in \mathcal{K}(\mathcal{M}).$

-

 $K(\mathcal{M})$ contains important topological information as follows:

Theorem (Lei-Wu, 2012)

Let $H \cup_S H'$ be a Heegaard splitting for a closed orientable 3-manifold M. Let $i: S \hookrightarrow H$, $i': S \hookrightarrow H'$, $i_*: \pi_1(S) \to \pi_1(H)$ and $i'_*: \pi_1(S) \to \pi_1(H')$ be as before. Then subject to the positive solution to Poincaré conjecture, we have

$$\frac{\operatorname{Ker} i_* \cap \operatorname{Ker} i'_*}{[\operatorname{Ker} i_*, \operatorname{Ker} i'_*]} \cong \pi_2(M).$$

Theorem (Lei-Wu, 2012)

Let $\mathcal{M}_1 = (M_1; V_1, W_1; S_1)$, $\mathcal{M}_2 = (M_2; V_2, W_2; S_2)$ be two Heegaard splittings, and $\mathcal{M} = \mathcal{M}_1 \#_{S^2} \mathcal{M}_2 = (M; V, W; S)$. Then there is a short exact sequence of groups

$$1 \to \langle [C] \rangle^{N} \to K(\mathcal{M}) \to K(\mathcal{M}_{1}) \ast K(\mathcal{M}_{2}) \to 1,$$

where C is the intersecting curve of the 2-sphere S^2 and the Heegaard surface S.

A Corollary

Applying above theorem to a stabilized Heegaard splitting, we have

Corollary (Lei-Wu, 2012)

Let $\mathcal{M}' = (M; V', W'; S')$ be an elementary stabilization of the Heegaard splitting $\mathcal{M} = (M; V, W; S)$. Then there is a short exact sequence of groups

$$1 \to \langle [C] \rangle^{N} \to K(\mathcal{M}') \to K(\mathcal{M}) \to 1,$$

where C is the intersecting curve of S' with the 2-sphere S^2 , which realizes the connected sum decomposition.

In particular, for the genus 2 splitting $\mathcal{M}' = (S^3; V, W; S)$ for S^3 , we have $\mathcal{K}(\mathcal{M}') \cong \langle [C] \rangle^N$, where C is a s.c.c. on S, s.t. C cuts S into two once punctured tori and C bounds disks in both V and W.

.

A Corollary

Applying above theorem to a stabilized Heegaard splitting, we have

Corollary (Lei-Wu, 2012)

Let $\mathcal{M}' = (M; V', W'; S')$ be an elementary stabilization of the Heegaard splitting $\mathcal{M} = (M; V, W; S)$. Then there is a short exact sequence of groups

$$1 \to \langle [C] \rangle^{N} \to K(\mathcal{M}') \to K(\mathcal{M}) \to 1,$$

where C is the intersecting curve of S' with the 2-sphere S^2 , which realizes the connected sum decomposition.

In particular, for the genus 2 splitting $\mathcal{M}' = (S^3; V, W; S)$ for S^3 , we have $\mathcal{K}(\mathcal{M}') \cong \langle [C] \rangle^N$, where C is a s.c.c. on S, s.t. C cuts S into two once punctured tori and C bounds disks in both V and W.

(4) (E) (A) (E) (A)

Let $\mathcal{M} = (M; V, W; S)$ be a Heegaard splitting for a 3-manifold M, and K the intersecting kernel.

Consider the normal subgroup

 $\Lambda(K) = \langle [\alpha] \in K : \alpha \text{ is an essential simple closed curve on } S \rangle^N$

of K. We call $\Lambda(K)$ the SCC subgroup of K.

As we see before, a Heegaard splitting \mathcal{M} is reducible if and only if $\Lambda(K)$ is non-trivial.

Let $\mathcal{M}' = (M; V', W'; S')$ be an elementary stabilization of Heegaard splitting $\mathcal{M} = (M; V, W; S)$ for M. By the previous corollary, there is a surjective homomorphim $h : K(\mathcal{M}') \twoheadrightarrow K(\mathcal{M})$.

Note that $\Lambda(\mathcal{K}(\mathcal{M})) \subset \Lambda(\mathcal{K}(\mathcal{M}'))$, there exists a commutative diagram

Quotient group $QK(\mathcal{M})$

In general, set

$$\mathcal{M}^{(0)} = \mathcal{M}, \ \mathcal{M}^{(1)} = \mathcal{M}', \ \cdots , \ \mathcal{M}^{(n)} = (\mathcal{M}^{(n-1)})', \ n \in \mathbb{N},$$

and $\rho_i : \mathcal{K}(\mathcal{M}^{(i)}) / \Lambda(\mathcal{K}(\mathcal{M}^{(i)})) \twoheadrightarrow \mathcal{K}(\mathcal{M}^{(i+1)}) / \Lambda(\mathcal{K}(\mathcal{M}^{(i+1)})),$
 $i = 0, 1, 2, \cdots$.

We have a sequence of surjective homomorphisms

$$\begin{array}{c} \mathcal{K}(\mathcal{M}^{(0)})/\Lambda(\mathcal{K}(\mathcal{M}^{(0)})) \twoheadrightarrow \mathcal{K}(\mathcal{M}^{(1)})/\Lambda(\mathcal{K}(\mathcal{M}^{(1)})) \twoheadrightarrow \cdots \\ \cdots \twoheadrightarrow \mathcal{K}(\mathcal{M}^{(n)})/\Lambda(\mathcal{K}(\mathcal{M}^{(n)})) \twoheadrightarrow \cdots \end{array}$$

The direct limit $\varinjlim_{n \in \mathbb{N}} \mathcal{K}(\mathcal{M}^{(n)}) / \Lambda(\mathcal{K}(\mathcal{M}^{(n)}))$ is a (in general, non-trivial) group, which is denoted by $\mathcal{QK}(\mathcal{M})$.

Theorem (L-Lei-Wu, 2016)

Let \mathcal{M}_1 and \mathcal{M}_2 be any two Heegaard splittings of a closed orientable 3-manifold M. Then

 $QK(\mathcal{M}_1) \cong QK(\mathcal{M}_2).$

Remark: By the above theorem, for any Heegaard splitting \mathcal{M} of a 3-manifold M, $QK(\mathcal{M})$ is independent of the choice of the Heegaard splitting, therefore it defines an invariant of M.

4 3 5 4

Theorem (L-Lei-Wu, 2016)

Let \mathcal{M}_1 and \mathcal{M}_2 be any two Heegaard splittings of a closed orientable 3-manifold M. Then

 $QK(\mathcal{M}_1) \cong QK(\mathcal{M}_2).$

Remark: By the above theorem, for any Heegaard splitting \mathcal{M} of a 3-manifold M, $QK(\mathcal{M})$ is independent of the choice of the Heegaard splitting, therefore it defines an invariant of M.

Corollary

For any compact orientable 3-manifold M, QK(M) is an invariant of the 3-manifold.

This corollary has an interesting application in knot theory.

Let K be a knot in S^3 , and E(K) the knot exterior of K.

From the above corollary, QK(E(K)) is an invariant of the 3-manifold E(K). Since knots are determined by their complements, QK(E(K)) is an invariant of the knot K.

We get a knot invariant from the Heegaard splitting of its complement.

< ∃ > <

Corollary

For any compact orientable 3-manifold M, QK(M) is an invariant of the 3-manifold.

This corollary has an interesting application in knot theory. Let K be a knot in S^3 , and E(K) the knot exterior of K. From the above corollary, QK(E(K)) is an invariant of the 3-manifold E(K). Since knots are determined by their complements, QK(E(K)) is an invariant of the knot K.

We get a knot invariant from the Heegaard splitting of its complement.

(4) (2) (4)

We may further have

Corollary

For any compact orientable 3-manifold M, $QK(M)^{ab}$ is an invariant of the 3-manifold.

If QK(M) is trivial for some 3-manifold M, the SCC subgroup can be used to detect the intersecting kernel.

Corollary

Let M be a compact orientable 3-manifold. If $QK(M) = \{1\}$, then there exists a Heegaard splitting \mathcal{M} of M such that the intersecting kernel of \mathcal{M} is isomorphic to its SCC subgroup.

Example

For $M = S^3$, QK(M) = 1.

(1) For genus 0 splitting \mathcal{M}_0 of S^3 , it is obvious that $\mathcal{K}(\mathcal{M}_0)$ is trivial, then $\Lambda(\mathcal{K}(\mathcal{M}_0))$ is trivial.

(2) For genus 1 splitting \mathcal{M}_1 of S^3 , $\mathcal{K}(\mathcal{M}_1)$ is trivial, then $\Lambda(\mathcal{K}(\mathcal{M}_1))$ is also trivial.

(3) For genus 2 splitting \mathcal{M}_2 of S^3 , $\mathcal{K}(\mathcal{M}_2) = \langle [C] \rangle^N \ (\cong \mathbb{Z})$, while $\mathcal{K}(\mathcal{M}_2)/\Lambda(\mathcal{K}(\mathcal{M}_2))$ is trivial, hence $\Lambda(\mathcal{K}(\mathcal{M}_2)) \cong \mathcal{K}(\mathcal{M}_2) \cong \mathbb{Z}$.

Example

For $M = S^3$, QK(M) = 1.

(1) For genus 0 splitting \mathcal{M}_0 of S^3 , it is obvious that $\mathcal{K}(\mathcal{M}_0)$ is trivial, then $\Lambda(\mathcal{K}(\mathcal{M}_0))$ is trivial.

(2) For genus 1 splitting \mathcal{M}_1 of S^3 , $\mathcal{K}(\mathcal{M}_1)$ is trivial, then $\Lambda(\mathcal{K}(\mathcal{M}_1))$ is also trivial.

(3) For genus 2 splitting \mathcal{M}_2 of S^3 , $\mathcal{K}(\mathcal{M}_2) = \langle [C] \rangle^N \ (\cong \mathbb{Z})$, while $\mathcal{K}(\mathcal{M}_2)/\Lambda(\mathcal{K}(\mathcal{M}_2))$ is trivial, hence $\Lambda(\mathcal{K}(\mathcal{M}_2)) \cong \mathcal{K}(\mathcal{M}_2) \cong \mathbb{Z}$.

.

Example

For
$$M = S^2 \times S^1$$
.

Let $\mathcal{M}_1 = (\mathcal{M}; \mathcal{H}_1, \mathcal{H}'_1; \mathcal{T})$ be the genus 1 splitting for \mathcal{M} . As we see before, $\mathcal{K}(\mathcal{M}_1) \cong \mathbb{Z}$, it is generated by $[\alpha]$, where α is a s.c.c. which bounds a meridian disk in each solid torus. Since $\mathcal{K}(\mathcal{M}_1) \lhd \pi_1(\mathcal{T}), \ \mathcal{K}(\mathcal{M}_1) = \langle [\alpha] \rangle = \langle [\alpha] \rangle^N$. α is essential in \mathcal{T} , so $[\alpha] \in \mathcal{K}(\mathcal{M}_1)$, which implies that $\langle [\alpha] \rangle^N \lhd \Lambda(\mathcal{K}(\mathcal{M}_1))$. But $\Lambda(\mathcal{K}(\mathcal{M}_1)) \lhd \mathcal{K}(\mathcal{M}_1)$, so $\Lambda(\mathcal{K}(\mathcal{M}_1)) \cong \langle [\alpha] \rangle^N$, and hence $\Lambda(\mathcal{K}(\mathcal{M}_1)) \cong \mathcal{K}(\mathcal{M}_1)$. Thus we have

$$K(\mathcal{M}_1)/\Lambda(K(\mathcal{M}_1)) = 1.$$

So $QK(S^2 \times S^1)$ is trivial.

.

- **1.** Classify the 3-manifolds M with QK(M) = 1.
- **2.** Give examples of the 3-manifolds M with $QK(M) \neq 1$.

3. Determine the algebraic structures of the group QK(M) for a 3-manifold M. Is QK(M) residually nilpotent? If so, what is the Lie algebra of QK(M)?

4. Are there any relations between QK(M) and the other known invariants of M?

4 E 6 4 E 6

THANKS FOR YOUR ATTENTION!

∃ ► < Ξ.</p>

3